首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2711篇
  免费   131篇
  国内免费   9篇
化学   2094篇
晶体学   33篇
力学   75篇
数学   134篇
物理学   515篇
  2024年   2篇
  2023年   14篇
  2022年   9篇
  2021年   50篇
  2020年   56篇
  2019年   49篇
  2018年   37篇
  2017年   32篇
  2016年   91篇
  2015年   81篇
  2014年   88篇
  2013年   155篇
  2012年   218篇
  2011年   248篇
  2010年   161篇
  2009年   133篇
  2008年   218篇
  2007年   194篇
  2006年   169篇
  2005年   167篇
  2004年   112篇
  2003年   93篇
  2002年   99篇
  2001年   57篇
  2000年   42篇
  1999年   48篇
  1998年   22篇
  1997年   19篇
  1996年   28篇
  1995年   26篇
  1994年   22篇
  1993年   22篇
  1992年   12篇
  1991年   10篇
  1990年   10篇
  1989年   6篇
  1988年   7篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1982年   4篇
  1981年   2篇
  1979年   2篇
  1978年   5篇
  1977年   1篇
  1976年   3篇
  1974年   5篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2851条查询结果,搜索用时 15 毫秒
991.
We have developed a methodology that can be used to determine disjoining pressures (Π) in both stable and unstable wetting films from the spatial and temporal profiles of dynamic wetting films. The results show that wetting films drain initially by the capillary pressure created by the changes in curvature at the air/water interface and subsequently by the disjoining pressure created by surface forces. The drainage rate of the film formed on a gold surface with a receding contact angle (θ(r)) of 17° decreases with film thickness due to a corresponding increase in positive Π, resulting in the formation of a stable film. The wetting film formed on a hydrophobic gold with θ(r)=81° drains much faster due to the presence of negative Π in the film, resulting in film rupture. Analysis of the experimental data using the Frumkin-Derjaguin isotherm suggests that short-range hydrophobic forces are responsible for film rupture and long-range hydrophobic forces accelerate film thinning.  相似文献   
992.
The metal coordination geometry in the active site of metalloproteins are very different from the one of small inorganic complexes, due to the inflexibility of the ligand set from amino acid side chains different from freely moving ligand set in synthesis. Using the sterically hindered 2,6-di-(p-fluorophenyl)benzoate(L) ligand, a series of mononuclear Co(II), Ni(II) and Cu(II) complexes of general formula [M(L)2(Hdmpz)2] (where, Hdmpz = 3,5-dimethyl pyrazole) have been synthesized and characterized by the variety of spectroscopic methods. A distorted octahedral geometry in case of nickel, tetrahedral geometry for cobalt and square pyramidal in copper was observed in the X-ray studies, which also revealed that the uncoordinated oxygen atom of the carboxylate group forms intramolecular hydrogen bonding with the N-H group of the coordinated 3,5-dimethylpyrazole in case of cobalt and copper.  相似文献   
993.
Dilute-acid pretreatment liquor (PL) produced at NREL through a continuous screw-driven reactor was analyzed for sugars and other potential inhibitory components. Their inhibitory effects on enzymatic hydrolysis of Solka Floc were investigated. When the PL was mixed into the enzymatic hydrolysis reactor at 1:1 volume ratio, the glucan and xylan digestibility decreased by 63% and 90%, respectively. The tolerance level of the enzyme for each inhibitor was determined. Of the identified degradation components, acetic acid was found to be the strongest inhibitor for cellulase activity, as it decreased the glucan yield by 10% at 1 g/L. Among the sugars, cellobiose and glucose were found to be strong inhibitors to glucan hydrolysis, whereas xylose is a strong inhibitor to xylan hydrolysis. Xylo-oligomers inhibit xylan digestibility more strongly than the glucan digestibility. Inhibition by the PL was higher than that of the simulated mixture of the identifiable components. This indicates that some of the unidentified degradation components, originated mostly from lignin, are potent inhibitors to the cellulase enzyme. When the PL was added to a simultaneous saccharification and co-fermentation using Escherichia coli KO11, the bioprocess was severely inhibited showing no ethanol formation or cell growth.  相似文献   
994.
Treatment of CpZrCl3 with 1 equiv of 2-(2H-benzo[d][1,2,3]triazol-2-yl)-4,6-di-tert-pentylphenol (LigH) in THF or toluene affords the monomeric complex C31H41Cl2N3O2Zr (1) or the dimeric complex C54H66Cl4N6O2Zr2 (2), respectively. THF can transform the dimeric 2 into monomeric 1 within a few minutes at room temperature. The reaction between LigH and 2 equiv of CpZrCl3 gave the novel dinuclear complex C32H38Cl5N3OZr2 (3), linked by three bridging chlorides. The monomeric complex C44H56Cl2N6O2Zr (4), containing two Lig and two Cl ligands, could be obtained by the reaction between 2 equiv of LigH and Zr(NMe2)4 in toluene and subsequent addition of Me3SiCl. The molecular structures of the complexes were determined by the single crystal X-ray crystallographic method. In the presence of methylalumoxane (MAO) as a cocatalyst, the four complexes synthesized were highly active for the polymerization of ethylene.  相似文献   
995.
Weakly fluorescent coumarinyl enones are rapidly transformed into strongly fluorescent molecules through the Michael addition reaction of a thiol group, where an intramolecular hydrogen bond plays a critical role in the reaction rate. The molecular probe (3) with an ortho hydroxyl group to a carbonyl group exhibits a rapid response toward GSH owing to the stabilization of the possible oxyanion intermediate by a preferable intramolecular hydrogen bond. Probe 1 with an o-hydroxyl group also showed a moderately enhanced reaction rate with GSH and soluble in HEPES buffer to exhibit a highly selective and sensitive fluorescence turn-on response toward biothiols.  相似文献   
996.
Poly(3,4-ethylenedioxythiophene) (PEDOT) stands out for its optimized conductivity, stability, and high degree of transparency which has led to its successful commercialization. These excellent properties of PEDOT are mostly ascribed to the alkylenedioxy bridge across the 3- and 4-positions, and thus much effort has been dedicated to synthesizing 3,4-ethylenedioxythiophene (EDOT) analogs. However, only few homologous compounds were successfully synthesized, such as 3,4-propylenedioxythiophene (PrDOT) or 3,4-(1,4-butylenedioxy)thiophene (BuDOT). In this Letter, we use Mitsunobu reaction to synthesize a series of 3,4-alkylenedioxythiophenes (ADOTs) derivatives with 8- to 16-membered rings. The eight-membered compounds were obtained in high or excellent yield. We also found that the 9- to 16-membered EDOT analogs were obtained in relatively low yield because of the competitive reaction to make dimers. Our method provides an easy way to modify ethylenedioxythiophenes (EDOTs), and these obtained ADOTs compounds are promising building blocks for the synthesis of functional π-conjugated systems used in material chemistry.  相似文献   
997.
Density functional theory calculations with the B3LYP functional were performed for the title ring‐opening reaction to understand the intrinsic activating and directing effects of the N‐substituents, as well as the electron donating effect of the para‐substituted (Y = Cl, H, Me) phenyl group at the more hindered benzylic C2 atom. The N‐tosyl group (i.e., N‐Tos) or the N‐(2‐pyridyl)sulfonyl group (i.e., N‐Py) was introduced to activate the ring nitrogen atom (N1) and the para‐substituted (Y = Cl, H, Me) phenyl group for the activation of the C2 atom. Conformational searches and geometry optimizations were performed for the N‐(para‐substituted)phenylaziridines ( 1 ~ 6 ). Calculations indicate that the aziridine 6 (i.e., Py/Me) has the most elongated C2? N1 bond intrinsically due to the electronic activating effects, implying the aziridine 6 to be the most potent candidate for the more‐hindered C2 opening. Transition states (TSs) were investigated for the prospective ring‐opening paths (I~IV), considering the types of intermolecular push–pull interactions between the N‐activated phenylaziridines and the cuprate. The N‐Py group provides an unique C2‐favored TS along the path IV, which the N‐Tos group cannot afford, due to the less charge transfer from the nucleophilic CH of the cuprate into the electrophilic C2 atom. Furthermore, the e‐donating effect of the para‐substituents (Y = Cl, H, Me) enhances the C2 opening for the path IV. This study enables us to understand the unusual ring‐opening phenomena in terms of electronic and directing effects and hence may serve as a tool to design substrates for highly regioselective ring openings. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   
998.
999.
Yoon SH  Chang J  Lin L  Mofrad MR 《Lab on a chip》2011,11(20):3555-3562
The dynamic nature of cell adhesion and detachment, which plays a critical role in a variety of physiological and pathological phenomena, still remains unclear. This motivates the pursuit of controllable manipulation of cell adhesion and detachment for a better understanding of cellular dynamics. Here we present an addressable, multifunctional, and reusable platform, termed the biological breadboard (BBB), for spatiotemporal manipulation of cell adhesion and detachment at cellular and subcellular levels. The BBB, composed of multiple gold electrodes patterned on a Pyrex substrate, is surface-modified with arginine-glycine-aspartic acid terminated thiol (RTT) and polyethylene glycol (PEG) to achieve a cell-adhesive surface on the gold electrodes and a cell-resistive surface on the Pyrex substrate, respectively. Cell adhesion is regulated by the steric repulsion of PEG chains, while cell detachment is controlled by the reductive desorption of a gold-thiol self-assembled monolayer (SAM) at an activation potential of -0.90 to -1.65 V. Experimental characterizations using NIH 3T3 fibroblasts are presented to demonstrate the utility of our device.  相似文献   
1000.
Kim C  Lee KS  Bang JH  Kim YE  Kim MC  Oh KW  Lee SH  Kang JY 《Lab on a chip》2011,11(5):874-882
This paper proposes a microfluidic device for the on-chip differentiation of an embryoid body (EB) formed in a microwell via 3-dimensional cultures of mouse embryonic carcinoma (EC) cells. The device adjusted the size of the EB by fluid volume, differentiated the EB by chemical treatment, and evaluated its effects in EC cells by on-chip immunostaining. A microfluidic resistance network was designed to control the size of the embryoid body. The duration time and flow rate into each microwell regulated the initial number of trapped cells in order to adjust the size of the EB. The docked cells were aggregated and formed a spherical EB on the non-adherent surface of the culture chip for 3 days. The EC cells in the EB were then differentiated into diverse cell lineages without attachment for an additional 4 days; meanwhile, retinoic acid (RA) was applied without serum to direct the cells into early neuronal lineage. On-chip immunostaining of the EB in the microwell with a neuronal marker was conducted to assess the differentiation-inducing ability of RA. The effect of RA on neuronal differentiation was analyzed with confocal microscopic images of the TuJ1 marker. The RA-treated cells expressed more neuronal markers and appeared as mature neuronal cells with long neurites. The fluorescence intensity of the TuJ1 in the RA-treated EB was twice that observed in the non-treated EB on day 5. It was demonstrated that the pre-screening of inducing chemicals on the early neuronal differentiation of EC cells in a single microfluidic chip was indeed feasible. This chip is expected to constitute a useful tool for assessing the early differentiation of ES cells without attachment, and is also expected to prove useful as an anti-cancer drug test platform for the cytotoxicity assay with cellular spheroids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号